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hydraulically connected to the cell at the down-
stream-most gauge in the model domain. This 
process resulted in a set of inundation-map librar-
ies for each modelled reach. Inundation polygons 
were merged with a variety of other geospatial 
data to provide information for flood mitigation 
and emergency response.

At the time of writing, NWS does not use 
two-dimensional hydraulic models for operational 
purposes, so tests and pilot projects developed for 
dynamic maps have mainly focused on areas for 
which the one-dimensional approach is valid or 
can be approximated. However, in the pilot 
project for St. Johns River, Florida, there was an 
opportunity to test the coupling by using the 
one-dimensional hydraulic model to generate 
flow outputs that were used in turn as inputs for 
a two-dimensional estuarine model. The estuarine 
model was also used to forecast salinity and 
temperature.

Currently, the strategy within the United States is 
to develop static maps for flood-prone areas and 
gradually develop hydrodynamic models for 
estuaries to provide real-time flood maps. The 
increased demand for probabilistic inundation 
maps by emergency managers is being recognized, 
but still remaining is the need to develop operational 
procedures, including priorities for addressing 
mapping uncertainty.

8.2	 A CASE STUDY: THE INDIAN COAST 
AT ANDHRA PRADESH

Th remaining sections of this chapter provide an 
example of a case study of the Indian coast at 
Andhra Pradesh (Rao et al., 2007). Rao (1968) clas-
sified the Indian coastline into three categories 
based on combined storm surges and wind waves. 
According to this classification, the Andhra coast of 
India from 14 to 16.5 degrees north falls principally 
into the B-category (2- to 5-metre surges), with a 
short C-category belt (greater than 5-metre surges) 
near Nizampatnam Bay. According to an analysis of 
historical records by Jayanthi (Jayanthi, N., 1999: 
oral presentation – Storm Surge and its Risk 
Assessments over the Coastal Areas of Bay of Bengal 
and Arabian Sea, at: National Conference on 
Tropical Meteorology (Tropmet 99), Chennai, India, 
16–19 February 1999), the Andhra coast is prone to 
be high risk with a small very high-risk zone near 
Nizampatnam Bay. The disastrous storm surges that 
occurred during 1977 and 1990 near Machilipatnam 
further support this categorization of the dangers of 
this coastline. In recent years, there has been 
considerable concern regarding the vulnerability of 
coasts due to cyclones and associated surges in view 

of projected rises of sea level due to global warming. 
In this section, we have undertaken, as a case study, 
the development of a disaster management  
plan for cyclones and associated storm surges  
in the nine coastal districts of the State of Andhra 
Pradesh.

Based on historical cyclone data, through a simple 
statistical analysis, delta P (the atmospheric pres-
sure deficit) was determined for cyclones making 
landfall on the Andhra Pradesh coast for return 
periods of 2, 5, 10, 25 and 50 years. The storm 
surge model developed by IIT–Delhi was run with 
the data values for a set of synthetic tracks, which 
were developed by compositing actual tracks, 
ensuring that each coastal district was covered. 
The results of the computer simulations, calibrated 
with observed surge data for each region of the 
coast, provided maximum probable surge ampli-
tudes at the mandal level, which is the 
administrative unit immediately below the district 
level.

A generally accepted procedure when determining 
the extent of land inundation by a storm surge is to 
assume that a water level of 5 metres at the coast-
line would have an impact up to the 5-metre land 
contour, and similarly for other depths. This is a 
standard approach when very detailed orographic 
information is not available, although it might 
somewhat overestimate the extent of inundation. It 
is an acceptable approach for coastal zone storm-
mitigation planning purposes.

In summary, the approach to determine the physi-
cal vulnerability is as follows:
(a)	 A database of tropical cyclone-generated storm 

surges impacting the Andhra Pradesh coast 
was constructed from data from IMD and 
from several other national and international 
sources.

(b)	 Because of climate change, projections into the 
future were limited to 50 years. All the available 
cyclone tracks for Andhra Pradesh were synthe-
sized into composite tracks to cover each of the 
coastal districts of the state.

(c)	 Making use of the projected pressure drop, the 
IIT–Delhi storm surge model was applied using 
the synthetic tracks to determine the maxi-
mum possible storm surge amplitude, during a 
50-year period, at various locations along the 
Andhra Pradesh coast.

(d)	 The total water-level envelope (TWLE) was 
determined by superimposing the tidal ampli-
tudes and the set-up of wind waves on the surge 
amplitudes.

(e)	 The determined water levels were then 
projected onto the coastal land using data on 
onshore topography to demarcate the horizon-
tal extent of inundation.
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(f)	 Maps of regions subjected to possible  
wind damage from cyclones were also  
prepared.

This conservative approach may slightly 
overestimate the extent of inundation, but it is 
appropriate for hazard mitigation and for coastal 
zone management, and is widely used around the 
world.

8.2.1	 Maps of physical vulnerability for 
the coastal districts

Mapping of inundation by storm surge and of 
regions subjected to wind damage was 
performed for the districts of Prakasham  

(Figure 8.3) and Guntur (Figure 8.4) of coastal 
Andhra Pradesh. The maps of physical vulnera-
bility were prepared for four scenarios – (a) 
frequent (10 per cent annual recurrence inter-
val), (b) infrequent (2 per cent annual recurrence 
interval), (c) a future climate scenario resulting 
in an intensification of the pressure field by 
5 per cent and (d) a more extreme case of inten-
sification of 7 per cent.

The three large rivers in Andhra Pradesh, 
Godavari, Krishna and Pennar, are subject to 
storm surge penetration. The extent of this was 
determined by projecting the surge water levels 
into the rivers. For this, it was assumed that, for a 
river with many meanders, the storm surge would 

Figure 8.3. (a) Map of land inundation by storm surge, and (b) regions affected by cyclonic winds for 
Prakasham District, Andhra Pradesh, India
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penetrate 10 per cent further than on land, and 
for a river with few meanders the penetration 
would be 15 per cent more. These assumptions 
are based on actual observations of storm surge 
penetration through these rivers (Murty, 1984). 
Physical-vulnerability maps for storm surge 
penetration up the rivers were then prepared 
(Figure 8.5 illustrates the estimation for the 
Krishna River).

8.2.2	 Social vulnerability

Social vulnerability was estimated for physically 
vulnerable mandals. By using the available data on 
population and other factors, along with the 
physical-vulnerability maps, overall index maps of 
cyclone vulnerability were developed. Figure 8.6 
shows the map for one of the districts of coastal 
Andhra Pradesh.

Figure 8.4. (a) Map of land inundation by storm surge, and (b) regions affected by cyclonic winds for  
Guntur District, Andhra Pradesh, India
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Figure 8.5. Estimated storm surge penetration through the Krishna River system

Figure 8.6. Map of overall cyclone vulnerability for Prakasham District, Andhra Pradesh, India
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9.1	 INTRODUCTION

Following the JCOMM-I mandate to assess the state 
of the art in operational storm surge numerical 
models and existing basic information sources, 
ETWS conducted a survey among Members and 
through IOC contact points. For the first time, an 
overview of operational practice regarding storm 
surge prediction has been documented. The compi-
lation of the results is intended to enrich the group’s 
expertise and provide a reference point of guidance 
for Members.

The information provided in this chapter is exclu-
sively based on the 20 responses that were received 
to the questionnaire. Figure 9.1 illustrates the 
geographical areas covered by the survey, including 
the distribution of areas prone to storm surges and 
those covered by observations and operational or 
pre-operational storm surge models, as reported in 
the responses. Half of the responses answered all 
sections completely, that is, section A on data 
records and section B and C on operational fore-
casting systems. In five cases there is no operational 

model or forecast, although observations are 
supported. In another five cases, details on instru-
ments and data have not been provided.

9.2	 BASIC INFORMATION ON STORM 
SURGES

9.2.1	 Observational data

The results of the enquiry on basic data sources 
confirm that measurements of sea level are exten-
sive but regular measurements of current are still 
rare and limited to the most advanced countries 
and institutions. Digital sea-level records have been 
available since the 1950s, although a major change 
in technology is widely noted in the 1990s. 
Nevertheless, a few analog instruments in opera-
tional use are still reported.

The meteorological offices running storm surge 
models do not usually manage sea-level data on 
their own. Data are shared among institutions, in 

CHAPTER 9

storm disaster preparedness: findings of the 
jcomm etws survey of national agencies

Figure 9.1. Geographical areas from which responses were received to the ETWS survey. Red dashes 
indicate areas prone to storm surges. Blue dots indicate areas covered by observations. Green dashes 

indicate areas covered by operational or pre-operational storm surge models.
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most cases in real time. About half of the responses 
reflect the use of metadata, in some cases well 
documented. Other agencies in the countries 
surveyed did not respond, probably not being 
responsible for the data management. 
Climatological analysis of extreme values is done 
on these databases in most cases. Table 9.1 summa-
rizes the responses concerning basic information 
on storm surges.

9.2.2	 Hindcast databases

The number of different ways of creating hindcast 
databases on storm surges are revealed by the 
survey. Databases maintained from operational 
runs, whose records depend on the period of opera-
tion of the models, are not very extensive, with 
eight years of data being reported at most. Case 
studies of extreme events are almost always carried 
out after the event, usually to assess the model – 
these kinds of studies do not (and are not intended 
to) ensure completeness for the climatology of 
extreme events. Except for a few cases, the models 
used are the same as the operational ones. However, 
extensive hindcast databases are reported as the 
outcomes of two European projects and also 
projects from Hong Kong, China and the Russian 
Federation (see Table 9.2).

9.3	 OPERATIONAL AND 
PRE-OPERATIONAL NUMERICAL 
MODELS

Only 5 of the 20 responses to the survey received 
reported not running an operational or  
pre-operational storm surge model. The informa-
tion collected on storm surge models in use is 
detailed in Tables  9.3–9.6. A wide variety of uses of 
sea-level observations in real time in conjunction 
with numerical prediction is indicated, for exam-
ple, correction of forecast bias, assimilation of 
initial conditions, blending in of bulletins with the 
forecasts, application of regression and empirical 
methods, and model validation.

9.3.1	 Model characteristics

Approximately 75 per cent of the applications use 
two-dimensional models and some use finer nested 
grids. Resolution ranges from 10 to 20 kilometres 
for regional models to 1 kilometre or finer for 
nested grids in the coastal regions. Two-dimensional 
models are especially suitable for ensemble  

forecasting. Table 9.3 compiles the information 
received concerning the model features.

9.3.2	 External forcing

Most of the applications are forced by the most 
significant tidal constituents at the open bounda-
ries, with a boundary definition for storm surge 
estimated from atmospheric pressure (inverted 
barometer). Extra-tropical storm surge models use 
forcing winds from high-resolution national NWPs, 
whereas tropical cyclone surge models derive winds 
from parametric models of storm track and inten-
sity (Table 9.4.).

9.3.3	 Products and dissemination

The forecast ranges of most of the operational 
applications are from 36 to 72 hours, although a 
forecast range as long as 120 hours has been 
reported. The predictions of surges generated by 
tropical cyclones have shorter ranges, usually under 
12 hours. Products derived from the numerical 
models are diverse and include time-varying sea-
level (surge) forecasts at specified locations and also 
charts, including local peaks and maxima charts, 
outputs for flooded areas, currents, and oil spill 
drift and spread. One report was received of the 
application of a statistically derived scale of risk for 
set-up (floods) as well as for abatement (navigation 
risk). Responses of the community to the enquiry 
about additional requirements from predictive 
models include increased information on flooded 
areas, the evolution of oil spills and surface currents 
(Table 9.5).

9.3.4	 Verification procedures

The performance of  operational  and  
pre-operational storm surge models is monitored, 
in most cases, on a continuous basis (see Table 
9.6). The sea-level products considered for the 
validation are either complete time series, peak 
levels or levels at selected times (such as high and 
low waters). The statistical parameters obtained, 
usually for different forecast ranges, are varied. 
The bias, RMS, standard deviation, average 
percentage error, linear regression (correlation 
coefficient) and the relation of standard error to 
mean square deviation are chosen by the different 
services. Statistics are provided either with a 
monthly or yearly frequency or may be related to 
the occurrence of major storms. The reader is 
referred to Chapter 6 for a more detailed treatment 
of verification procedures.



CHAPTER 9. storm disaster preparedness: findings of the jcomm etws survey of national agencies 9-3

Table 9.1. Basic information on storm surges (SL: sea level; ADCP: acoustic Doppler current profiler)

Stations Parameter Period Instrument Digital/
analog Metadata Climatology Country

2 SL 1986–present Stevens type 
A D/A Yes Mauritius

21. Further 
information: 
http://www.
puertos.es

SL 1992–present 15 acoustic, 
7 pressure D Sensors, units, 

models

Trends, 
extremes, 

main regimes
Spain

North 
Sea,Baltic, 
Skagerrak 

coasts

SL, current

Nineteenth 
century–

present (SL), 
1990s (current)

Pressure, 
buoy D

Yes: 
Web-based. 

Further 
information: 
http://www.
edios.org/

Yes Denmark

SL ISDM gauge D Canada

66 SL 1960–present

53 float 
gauges with 
stilling wells, 
12 acoustic, 
1 pressure

D

Location, 
datum versus 

ground 
elevation

Maxima Japan

25 SL 1970–present
22 well-type 
tide gauges, 
3 radar-type

D Yes: Web-based
Maximum 
SL return 
periods

Republic of 
Korea

170 SL, current
Analog since 
1845, digital 
since 1950

Tide gauges, 
vector-

averaging 
current 
meters, 
ADCP

D

SL: other 
institutes. 
Currents: 
position, 

depth, start 
and end date, 
interval types 
of instrument

Extreme 
value 

analysis, 
return 
periods

Germany

7 SL Earliest 1921, 
3 new Staff gauge D None

River inflow, 
evaporation, 
precipitation, 
ice cover for 

model

Kazakhstan

18 SL Early 1900 Well-type D Sweden

North-east 
coasts. Other 

services
SL 10 years or 

more Various Netherlands

Other services

Risk-areas 
mapping. 
Extreme 

heights for 
sensitive 

areas

France

SL

SL: hourly 
1954–1987. 
Since 1988, 
1-minute SL 
maximum. 

Events, 
1906–1953

D (all)

Station name, 
location, type 
of instrument, 

data period 
and availability 

(%)

Maximum 
SL return 
periods

Hong Kong, 
China

SL Since 1992

Staff gauges, 
float and 
pressure 
recorders

D since 
late 

1990s

Location, 
start date, 

programme, 
type of 

instrument, 
accuracy

Frequency 
over 

threshold. 
Maxima, 

1961–2000

Latvia
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Stations Parameter Period Instrument Digital/
analog Metadata Climatology Country

1 Current
Since 

December 
2002

ADCP D Documents Slovenia

SL, current

Up to early 
nineteenth  

century, field 
experiments

Tide gauges, 
others D/A

Positive and 
negative 
surge, 

averaged 
maximum, 
different 
periods

Russian 
Federation

SL Since 1980 Tide gauge, 
Stevens D/A Date and 

location
SL monthly 

means Ecuador

SL Since 1582 Analysed

Surge peak, 
extent of 
damage 

(number of 
people), inland 

inundation 
(km)

Analysis of 
maxima, 
return 
periods

India

44 SL Hourly Tide gauges D

Documented. 
Further 

information: 
http://www.

pol.ac.uk/ntslf

United 
Kingdom

Source Model Period Country

EU HIPOCAS project, 
operational

HAMSOM, 
Nivmar

1958–2002, 
1998–present Spain

EU STOWASUS-2100 project. See: http://web.
dmi.dk/pub/STOWASUS-2100/

Climate storm surge model, 
non-operational 1958–2002 Denmark

Events, case studies Operational 1998–present. 
Events Japan

Case studies Operational 1997–present Republic of Korea

Continuous and case studies Operational 2002–2004, 
2005–present Argentina

Case studies Operational 1962–1999 Germany

Case studies. Simulations Operational 1940–2004 Kazakhstan

Case studies Operational 1999 France

Extensive Operational 1947–2004 Hong Kong, China

Extensive and case studies Operational 1948–2004 Russian Federation

Maximum envelope of surge water India

EU STOWASUS-2100 project Operational 1958–2002, 
1992–present United Kingdom

Table 9.2. Hindcast databases on storm surges
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Model Area Type Grid Country

HAMSOM, 
Nivmar

Mediterranean Sea 
and Iberian Peninsula

Vertically integrated 
barotropic 10 minutes Spain

Mike 21 
pre-operational 

3-D

2-D finite element 
MOG2D

North Sea, Baltic Sea 2-D hydrodynamic Finite difference 9 nmi, 3 nmi, 
1 nmi, 1/3 nmi Denmark

Coupled ice–
ocean

NPAC

Grand Banks, 
Newfoundland, 

Labrador

NE Pacific, 
120°W–160°W, 

40°N–62°N

3-D circulation based 
on the Princeton Ocean 

Model

Approximately 20 km x  
20 km

Finite difference curvilinear  
C-grid 1/8 degree

Canada

JMA Storm Surge 23.5°N–46.5°N, 
122.5°E–146.5°E

2-D linearized shallow 
water

Staggered Arakawa C-grid.
1 minute latitude/longitude Japan

KMA Storm Surge 20°N–50°N, 
115°E–150°E

2-D barotropic surge and 
tidal current based on the 
Princeton Ocean Model

Approximately 8 km x 8 km, 
finite difference curvilinear  

C-grid 1/12 degree

Republic of 
Korea

NIVELMAR Portuguese mainland 
coastal Shallow water 1 minute latitude x 1 minute 

longitude Portugal

SMARA storm 
surge

Shelf sea 32°S–55°S, 
51°W–70°W.

Rio de la Plata

2-D depth-averaged

Geographical Arakawa C-grid, 
1/3 degree latitude x  
1/3 degree longitude

1/20 degree latitude x 1/20 
degree longitude

Argentina

BSH circulation 
(BSHcmod)

BSH surge 
(BSHsmod)

North-east Atlantic, 
North Sea, Baltic

3-D hydrostatic circulation

2-D barotropic surge

Regional spherical, North Sea, 
Baltic 6 nmi, German Bight

Western Baltic, 1 nmi, surge 
North Sea, 6 nmi, north-east 

Atlantic 24 nmi

Germany

Caspian Storm 
Surge

Caspian Sea 
36°N–48.5°N, 

45°E–58°E

North Caspian 
Sea 44.2°N–48°N, 

46.5°E–55.1°E

2-D hydrodynamic, based 
on MIKE 21 (DHI Water & 

Environment)
10 km x 2 km Kazakhstan

HIROMB/NOAA North-east Atlantic, 
Baltic 3-D baroclinic C-grid, 24 nmi Sweden

WAQUA-in-
Simona/DCSM98

Continental shelf 
48°N–62°N, 12°E–

13°E

2-D shallow water, ADI 
method, Kalman filter data 

assimilation

1/8 degree longitude x 1/12 
degree latitude Netherlands

Derived from 
MOTHY oil spill 

drifts model

Near-Europe Atlantic 
(Bay of Biscay, 

Channel and North 
Sea) 8.5°E–10°E, 

43°N–59°N

West Mediterranean 
basin (from the Strait 
of Gibraltar to Sicily)

Restricted area in 
overseas departments 

and territories

Shallow-water equations

Arakawa C-grid

5’ of latitude x 5’ of longitude

Finer meshes

France

SLOSH
Sea area south of 
Hong Kong within 

130 km
Finite difference Polar, 1 km near to 7 km, 

South China Sea
Hong Kong, 

China

Table 9.3. Features of operational and pre-operational storm surge models (nmi: nautical miles)
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Model Area Type Grid Country

Short-term 
sea-level and 

current forecast

Caspian Sea and 
near-shore low-lying 

zones

3-D hydrodynamic 
baroclinic 3 nmi horizontal, 19 levels Russian 

Federation

IIT–Delhi, IIT–
Chennai,

NIOT–Chennai

East and west coasts 
of India and high-
resolution areas

Non-linear, finite element, 
explicit finite element

For example, for inundation 
model average spacing of 
12.8 km offshore direction 
and 18.42 km along shore

India

CS3 tide surge North-west European 
shelf waters

Finite difference, vertically 
averaged

C-grid 12 km, nested finer 
resolution United Kingdom

Table 9.4. External forcing provided to operational or pre-operational applications

Wind Open boundaries
Country

Source Update Spatial resolution Surge Tides

INM 
(HIRLAM)

Twice daily, 
input every 3 

hours
0.2 degrees Inverse barometer MOG2D model Spain

DMI HIRLAM 6 hours, hourly 
input 5 km Air pressure, 

atmospheric effects

North bound: 
Obeskommando der 
kiriegsmarine (Naval 

High Command, 
Germany, 1943), 10 

constituents

South bound: 
Admiralty Tsales, 4 

constituents

Denmark

MSC

United 
States Navy 
COAMPS

Input every 3 
hours, daily. 

Daily 48-hour 
forecasts, 
6-hourly

Approximately 24 
km x 24 km

Fixed seasonal 
conditions. Radiation

Tide model

Topex altimeter inverse 
model

Canada

Radiation, zero flow 
normal to sea–land 

interface

Harmonic analysis of 
tide-gauge data Japan

KMA 
mesoscale 

model 
(MM5)

Input every 
3 hours, daily

Daily 48-hour 
forecasts, 
12-hourly

Approximately 
30 km x 30 km

Air pressure, 
atmospheric effects

Tide model and 
harmonic analysis of 

tide-gauge data

Republic of 
Korea

ECMWF 
10-m wind

1 degree latitude x  
1 degree longitude Portugal

NCEP GFS 
(analyses)

SMN 
(Argentina) 
Eta model 
(forecasts)

Every 6 hours

Every 3 hours

Approximately  
0.47 degrees 

latitude x 0.47 
degrees longitude

1/3 degree latitude 
x  1/3 degree 

longitude

Schiwdersky atlases, 
5 constituents open 

sea Kelvin wave 
interpolation from 

stations at mouth of 
estuary

Argentina

DWD 
(German 
Weather 
Service): 

global GME

Local LM 
(Europe)

Twice daily

Approximately 
40 km

Approximately 
7 km

Circulation: two-way 
nesting, monthly 

climatological 
temperature and 

salinity inflow 
through buffer layer

Circulation and surge: 
radiation, surge from 

north-east Atlantic 
model

North Sea 14 
constituents Germany
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Wind Open boundaries
Country

Source Update Spatial resolution Surge Tides

ECMWF 
global

120 hours every 
6 hours

1.5 degrees latitude 
x 1.5 degrees 

longitude

Closed boundaries 
(coarse).
Nesting

Kazakhstan

HIRLAM Hourly 22 km Calculated tidal 
components Sweden

HIRLAM 
(NL-KNMI)

Update 6 hours, 
1 hour 0.2 degrees

10 tidal components 
tuned from ocean 

models
Netherlands

IFS

ARPEGE

ALADIN

6 hours

3 hours

3 hours

0.5 degrees

0.25 degrees

0.1 degrees

Inverted barometric 
radiation for current, 

normal zero at 
coastline

Tide components from 
past observations France

Tropical cyclone 
track, size and 

intensity

Predicted astronomical 
tides

Hong Kong, 
China

LAAM
Twice daily, 
input every 

6 hours
75 km River runoff. Ice 

conditions
Russian 

Federation

Objective 
analyses of 
synoptic 

observations

Pressure drop

Radius of maximum 
wind

Maximum wind 
speed

Forecast landfall

Motion of the storm

India

United 
Kingdom 
mesoscale 

model

Inverse barometer Larger-scale model United Kingdom

Model output Range/time interval Real-time data use 
(routine) Applications Country

Storm surge 72 hours Assimilation Water-level forecast Spain: 
http://www.puertos.es

Water level and 
currents

54 hours, hourly, 
4 times per day

Remove bias of local 
forecast.

Autoregressive filter

Water level, oil drift 
calculations

Denmark: 
http://www.dhi.dk

Water level at 
locations.

Surface height 
anomaly.

Local time series

2 days 48 hours, 
6-hourly

Real-time height 
anomalies from gauges, 

comparisons

Water level, surface 
currents, drift

Canada: 
http://www.mar.
dfo-mpo.gc.ca/
science/ocean/

icemodel/ice_ocean_
forecast.html

Time series of sea 
level and surges 33 hours Under development Time series of sea level 

and surges Japan

Time series of sea 
level

2 days.
48 hours, 12-hourly

Empirical methods 
combine model and 

real-time data.
Time series of sea level Republic of Korea

Sea level and 
currents 120 hours Sea level and currents Portugal

Water level and 
mean current, surge 48 hours Water-level forecasts Argentina

Table 9.5. Products and dissemination of operational storm surge numerical predictions
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Model output Range/time interval Real-time data use 
(routine) Applications Country

Currents, water 
level, temperature, 

salinity, ice 
thickness and 
compactness

Circulation: 72 
hours, starting 
from 12 hour 

meteorological 
forecast once a day

Surge: 2 per day, 
84 hours water level

Empirical methods 
combine model and 

real-time data.

Water-level and 
current forecasts. 

Drift, oil-spreading 
calculations

Germany

Current and water 
level, maps of water 

depth, P and Q 
fluxes, time series

Initial conditions with 
empirical methods

Local predictions. 
Weekly bulletins Kazakhstan

Sea-level maps, 
time series, Web 
presentations for 

internal use

Comparisons, internal 
use

Water-level forecasts, 
drift calculations, 

currents
Sweden

Sea-level maps and 
selected locations

48 hours, maps every 
3 hours, 10 minutes 

at selected points
Data assimilation Water-level/surge 

forecasts for the coast Netherland

GRIB and BUFR data 
files 

48 hours, fields 
hourly, 5 minutes t 

ports
Water-level forecasts France

Maximum sea 
level and tides at 
locations, table of 
hourly sea levels

18 hours before and 
12 hours after the 

closest approach of 
the cyclone

Combination in bulletins Storm surge forecasting Hong Kong, China

Sea level, 3-D 
currents, flooded 

areas
48 hours, 1 hour

Forecast regression-
based positive/negative 

surge

Water-level forecasts, 
flooding, others Russian Federation

Peak surge and 
inundation 48 hours, 3 hours Forecasts for the case of 

tropical cyclones India

STFS 36 hours Validation Hindcast, forecasts United Kingdom

Bulletins, marine 
forecasts El Salvador
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Table 9.6. Verification of operational and pre-operational storm surge models (sea level)

Method Time period/frequency Country

Case studies, comparisons with observations 15 years of tropical cyclone events 
overseas France

Events, hindcast peak surges, biases and RMSE, 
collocations.
Time series

Continuous Japan

Events, hindcast peak surges, biases and RMSE.
Time series, water level at selected stations Monthly Republic of Korea

Full range of statistics Monthly United Kingdom

Research mode India

RMS, others Pre-operational validation Russian Federation

See: http://www.puertos.es Real time Spain

Mean absolute percentage error on the 3 highest high 
waters at a set of predefined stations as a function of 

forecast range every 6 hours. Running means are applied 
for 12 months and averaged for the 18 stations.

Refer to Section 7.2.1

Continuous: see: http://ocean.dmi.dk/
validations/surges/background.uk.php Denmark

Water level at selected stations Canada

0-hour forecast at stations Not continuous Portugal

Storm surge case studies and continuous at selected 
locations Monthly Argentina

Statistics of deviations from measured data. Forecasts 
within 12 hours, corresponding to high or low waters. 

0-hour not done. Additional parameters. 
Refer to Section 7.2.1

Yearly Germany

Peak storm surge height, linear regression 1947–1998 Hong Kong, China

Parameters according to pre-established norms, mainly 
relation of standard error to mean square deviation Kazakhstan

Comparison with observations and specific campaigns Sweden

RMS, bias, standard deviation, for main locations Since 1994 Netherlands
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